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In the case of large structures, one obstacle encountered when the computation of reliability is attempted by most methods, is the presence of large numbers of random variables. Another issue is that computing the reliability of large structures typically requires conducting their structural analysis, which can be computationally time consuming, a large number of times. These concerns may render the reliability analysis computationally expensive or even unachievable. In this paper, a hybrid technique for computing the reliability of large structures is presented. In this technique, the most probable point of failure (MPP) is determined first using modified concepts of the Weighted Average Simulation Method (WASM). The WASM concepts are modified to handle the problem of large random variables present in large structures and also in order to find the MPP in a computationally more efficient manner. Once the MPP is determined, it is transformed into the standard normal space. Hence, the reliability index is calculated in closed-form in the standard normal space. The approach is tested on a truss bridge example.   
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1.	Introduction 

*The aim of computing structural reliability is to assess the safety of an engineered system by considering how its pre-specified performance is affected by random variations and uncertainties in demands, system properties, boundary and initial conditions, etc. (Bichon et al., 2011; Haukaas and Der Kiureghian, 2007). Existing structures are typically large, where they are constructed of many members, and accordingly a large number of associated random variables are encountered in the reliability analysis of the structure. For large structures, requiring time-consuming structural analysis, component-level reliability analysis can be a computationally expensive task and system-level reliability analysis can be even more so (Bichon et al., 2011). The computational cost is exacerbated when the reliability analysis is embedded into a design optimization application. However, the crucial importance of such goal calls for the development of computationally efficient techniques for conducting the reliability analysis of large structures.  In the literature, two classes of methods devoted for the computation of structural reliability are dominant. These two classes are the Most Probable 
                                                 * Corresponding Author.  Email Address: n.okasha@uoh.edu.sa 

Point (MPP)-based methods and the simulation-based class of methods. The following is a brief review of these two classes. As will be shown in later sections, the hybrid technique presented in this paper is a cross-over between methods from both of these classes. The MPP is the point that has the highest likelihood among all points in the failure region (Der Kiureghian and Dakessian, 1998; Rahman and Wei 2006). In other words, it is the point that has the highest probability density on the limit state function. The most widely used method in the MPP-based class is the First Order Reliability Method (FORM) (Ditlevsen and Madsen, 1996). According to this method, the performance function is approximated by a hyperplane which is tangent to the failure surface at the MPP. Additionally, the Second Order Reliability Method (SORM) approximates the performance function by a quadratic hypersurface in the neighborhood of the MPP. Several other MPP-based methods were also proposed in the literature (Breitung, 1984; Tvedt 1990; Der Kiureghian et al., 1987; Der Kiureghian and De Stefano, 1991; Hong et al., 1999; Zhao and Ono, 2001; Xu and Cheng, 2003; Adhikari, 2004, Hohenbichler et al., 1987; Koyluoglu and Nielsen, 1994; Hasofer and Lind, 1974; Wu et al., 1990). Conducting these methods typically involves the calculation of the performance function gradients with respect to the random variables present in the 
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problem. Performance functions in large structures are usually implicit functions that require conducting structural analysis operations. Thus, gradients are determined numerically in such cases, which requires the evaluation of the performance function several times for each random variable. As the number of random variables increases in a problem, such as in the typical case of large structures, the required number of performance function evaluations increases accordingly. Hence, the computational efficiency of these methods becomes in question when problems with large numbers of random variables are encountered.  The most known simulation-based technique is the Monte Carlo Simulation (MCS), (Melchers, 1999). MCS is inefficient if the evaluation of the performance function is computationally expensive or if the probability of failure is very small (Choi et al., 2006; Melchers, 1999; Nowak and Collins, 2013). Indeed, the repetitive structural analysis of large systems can be computationally cumbersome. Researchers have developed numerous other simulation-based methods over the years, including stratified sampling (Ziha, 1995), Latin Hypercube Sampling (Olsson et al., 2003; Huntington and Lyrintzis, 1998), Importance Sampling (Melchers, 1990; Ibrahim, 1991), Response Surface Methods (Allaix and Carbone, 2011; Rajashekhar and Ellingwood, 1993), Directional Sampling (Ditlevsen et al., 1990; Melchers, 1994; Nie and Ellingwood, 2000), Subset Simulation (Au et al., 2007; Miao and Ghosn, 2011), Line Sampling (Pradlwarter et al., 2007; Lu et al., 2008; Depina et al, 2016) and Local Domain Monte Carlo simulation (Pradlwarter and Schuëller, 2010). The Weighted Average Simulation Method (WASM) (Rashki et al., 2012; 2014a, b; Luo et al., 2014) is one of the most recent methods which have been proven to be capable of determining the reliability with a reasonably small number of generated samples.   In this paper, a hybrid technique for computing the reliability of large structures is presented. In this technique, the MPP is determined first using modified concepts of the WASM. The WASM concepts are modified in order to find the MPP more efficiently such that the performance function is evaluated for a small portion of the generated samples. It is also shown that the WASM faces a numerical problem when large numbers of random variables are handled in the problem. This problem is overcome in this paper by efficiently modifying the weight index equation. Once the MPP is determined, it is transformed into the standard normal space. Hence, the reliability index is calculated in closed-form in the standard normal space. The approach is tested on a bridge example. 
2.	Structural	reliability	Determination of the structural reliability requires the establishment of the performance function. The performance function, g, associated 

with failure of a component having resistance R and subjected to load L can be calculated by: G (R,L) = R – L                   (1) A limit state function is the performance function satisfying the condition g = 0. The probability of failure can be defined as the chance that a particular combination of R and L will give a negative value of g, which can be expressed as:  Pf = probability that [g < 0]                  (2) Structural reliability is typically measured by the reliability index, ߚ, which can be determined as: β = Φିଵ(1 − P୤)                      (3) where ɸ-1 is the inverse of the standard normal distribution function.  
3.	Determination	of	the	MPP	by	WASM	The WASM is a simple yet efficient and robust method that is capable of overcoming the limitations and difficulties of current reliability methods. The method can be used to determine the probability of failure and MPP. In this paper, emphasis is given to the determination of the MPP. One of the advantages of using the WASM in finding the MPP is that an explicit performance function is not needed. Another advantage is that there is no concern of risking convergence to a local MPP. The procedure for determining the MPP by the WASM is summarized in the following steps: 1- Proper intervals for each random variable in the problem are determined. Rashki et al. (2012) suggested that an MCS can be used to determine the upper and lower points for the interval of each random variable. 2- Samples for all random samples are generated in a random variable space. The uniform distribution can be used for generating these random samples (Rashki et al., 2012). 3- A weight index is determined for each sample as the product of the probability density functions (PDFs) of the variables as follows (Rashki et al. 2012): 
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