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In the case of large structures, one obstacle encountered when the
computation of reliability is attempted by most methods, is the presence of
large numbers of random variables. Another issue is that computing the
reliability of large structures typically requires conducting their structural
analysis, which can be computationally time consuming, a large number of
times. These concerns may render the reliability analysis computationally
expensive or even unachievable. In this paper, a hybrid technique for
computing the reliability of large structures is presented. In this technique,
the most probable point of failure (MPP) is determined first using modified
concepts of the Weighted Average Simulation Method (WASM). The WASM
concepts are modified to handle the problem of large random variables
present in large structures and also in order to find the MPP in a
computationally more efficient manner. Once the MPP is determined, it is
transformed into the standard normal space. Hence, the reliability index is
calculated in closed-form in the standard normal space. The approach is
tested on a truss bridge example.

© 2016 IASE Publisher. All rights reserved.

1. Introduction

The aim of computing structural reliability is to
assess the safety of an engineered system by
considering how its pre-specified performance is
affected by random variations and uncertainties in
demands, system properties, boundary and initial
conditions, etc. (Bichon et al., 2011; Haukaas and Der
Kiureghian, 2007). Existing structures are typically
large, where they are constructed of many members,
and accordingly a large number of associated
random variables are encountered in the reliability
analysis of the structure. For large structures,
requiring time-consuming structural analysis,
component-level reliability analysis can be a
computationally expensive task and system-level
reliability analysis can be even more so (Bichon et
al, 2011). The computational cost is exacerbated
when the reliability analysis is embedded into a
design optimization application. However, the
crucial importance of such goal calls for the
development of computationally efficient techniques
for conducting the reliability analysis of large
structures.

In the literature, two classes of methods devoted
for the computation of structural reliability are
dominant. These two classes are the Most Probable
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Point (MPP)-based methods and the simulation-
based class of methods. The following is a brief
review of these two classes. As will be shown in later
sections, the hybrid technique presented in this
paper is a cross-over between methods from both of
these classes.

The MPP is the point that has the highest
likelihood among all points in the failure region (Der
Kiureghian and Dakessian, 1998; Rahman and Wei
2006). In other words, it is the point that has the
highest probability density on the limit state
function. The most widely used method in the MPP-
based class is the First Order Reliability Method
(FORM) (Ditlevsen and Madsen, 1996). According to
this method, the performance function is
approximated by a hyperplane which is tangent to
the failure surface at the MPP. Additionally, the
Second Order Reliability = Method (SORM)
approximates the performance function by a
quadratic hypersurface in the neighborhood of the
MPP. Several other MPP-based methods were also
proposed in the literature (Breitung, 1984; Tvedt
1990; Der Kiureghian et al, 1987; Der Kiureghian
and De Stefano, 1991; Hong et al., 1999; Zhao and
Ono, 2001; Xu and Cheng, 2003; Adhikari, 2004,
Hohenbichler et al, 1987; Koyluoglu and Nielsen,
1994; Hasofer and Lind, 1974; Wu et al, 1990).
Conducting these methods typically involves the
calculation of the performance function gradients
with respect to the random variables present in the
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problem. Performance functions in large structures
are usually implicit functions that require
conducting structural analysis operations. Thus,
gradients are determined numerically in such cases,
which requires the evaluation of the performance
function several times for each random variable. As
the number of random variables increases in a
problem, such as in the typical case of large
structures, the required number of performance
function evaluations increases accordingly. Hence,
the computational efficiency of these methods
becomes in question when problems with large
numbers of random variables are encountered.

The most known simulation-based technique is
the Monte Carlo Simulation (MCS), (Melchers, 1999).
MCS is inefficient if the evaluation of the
performance function is computationally expensive
or if the probability of failure is very small (Choi et
al,, 2006; Melchers, 1999; Nowak and Collins, 2013).
Indeed, the repetitive structural analysis of large
systems can be computationally cumbersome.
Researchers have developed numerous other
simulation-based methods over the years, including
stratified sampling (Ziha, 1995), Latin Hypercube
Sampling (Olsson et al, 2003; Huntington and
Lyrintzis, 1998), Importance Sampling (Melchers,
1990; Ibrahim, 1991), Response Surface Methods
(Allaix and Carbone, 2011; Rajashekhar and
Ellingwood, 1993), Directional Sampling (Ditlevsen
et al, 1990; Melchers, 1994; Nie and Ellingwood,
2000), Subset Simulation (Au et al.,, 2007; Miao and
Ghosn, 2011), Line Sampling (Pradlwarter et al,
2007; Lu et al., 2008; Depina et al, 2016) and Local
Domain Monte Carlo simulation (Pradlwarter and
Schuéller, 2010). The Weighted Average Simulation
Method (WASM) (Rashki et al,, 2012; 20144, b; Luo
etal., 2014) is one of the most recent methods which
have been proven to be capable of determining the
reliability with a reasonably small number of
generated samples.

In this paper, a hybrid technique for computing
the reliability of large structures is presented. In this
technique, the MPP is determined first using
modified concepts of the WASM. The WASM
concepts are modified in order to find the MPP more
efficiently such that the performance function is
evaluated for a small portion of the generated
samples. It is also shown that the WASM faces a
numerical problem when large numbers of random
variables are handled in the problem. This problem
is overcome in this paper by efficiently modifying the
weight index equation. Once the MPP is determined,
it is transformed into the standard normal space.
Hence, the reliability index is calculated in closed-
form in the standard normal space. The approach is
tested on a bridge example.

2. Structural reliability
Determination of the structural reliability

requires the establishment of the performance
function. The performance function, g, associated
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with failure of a component having resistance R and
subjected to load L can be calculated by:
GRL)=R-L (1
A limit state function is the performance function
satisfying the condition g = 0. The probability of
failure can be defined as the chance that a particular
combination of R and L will give a negative value of
g, which can be expressed as:
Pt = probability that [g < 0] (2)
Structural reliability is typically measured by the
reliability index, 8, which can be determined as:
B=o"'(1—-P) (3)
where ¢! is the inverse of the standard normal
distribution function.

3. Determination of the MPP by WASM

The WASM is a simple yet efficient and robust
method that is capable of overcoming the limitations
and difficulties of current reliability methods. The
method can be used to determine the probability of
failure and MPP. In this paper, emphasis is given to
the determination of the MPP. One of the advantages
of using the WASM in finding the MPP is that an
explicit performance function is not needed. Another
advantage is that there is no concern of risking
convergence to a local MPP. The procedure for
determining the MPP by the WASM is summarized in
the following steps:

1- Proper intervals for each random variable in the
problem are determined. Rashki et al. (2012)
suggested that an MCS can be used to determine
the upper and lower points for the interval of each
random variable.

2- Samples for all random samples are generated in a
random variable space. The uniform distribution
can be used for generating these random samples
(Rashki et al,, 2012).

3- A weight index is determined for each sample as
the product of the probability density functions
(PDFs) of the variables as follows (Rashki et al.
2012):

wi)=T] f; ()

= (4)

where W(i) is the weight index of the ith sample, f;

is the PDF of the jt variable, and n is the number of
random variables.

4- The index function, I(i), for the ith sample is then

established by evaluating the performance

function and thus I(i) is determined as (Rashki et
al.,, 2012):

(i) = {t
(5)

5-In the WASM, the MPP is the point in the failure
region with the highest weight index since it is
considered as the point with the highest failure
potential (Rashki et al.,, 2012). The MPP can thus
be determined as follows:

MPP = mii;ilx{l (i)W (i)}

forg, <0
forg, >0

(6)

where N is the number of samples.



Nader M. Okasha/International Journal of Advanced and Applied Sciences, 3(3) 2016, Pages: 19-27

4. Determination of the probability of failure by
WASM

According to the WASM, the probability of failure
is defined as the ratio of the summation of weight
indices in the failure region to the summation over
the entire region. After performing steps 1 through 4
in the above procedure, the probability of failure can
now be determined as follows (Rashki et al,, 2012):

3 1) W ()

P, =5
2 W (@)
)

5. Calculation of the reliability index in standard
normal space

The reliability index can be defined as the
minimum distance between the origin and the failure
surface in standard normal space (Hasofer and Lind,
1974). Fig. 1(a) shows a hypothetical space for
random variables X; and X; along with a limit state
function g(Xi, Xz) = 0. In order to determine the
reliability index according to Hasofer and Lind
(1974), the random variables and performance
function are transformed to the standard normal
space as shown in Fig. 1(b).

Fail Region

Safe Region

Fig 1: Limit state function, g = 0, in (a) space of random
variables X1 and X2, and (b) standard normal space Ui - Uz

The transformation of n normally distributed
random variables X = [Xj, X3, .., X;,] into a set of
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standard variables U = [Uy, Uy, .., Uy] with zero
means and unit covariance matrix can be achieved
by applying the following equation (Der Kiureghian
and Liu, 1985):

U=ID(X-M) )

where D = diag [oi] = the diagonal matrix for the
standard deviations such that o; is the standard
deviation of variable X;, M = [mj, mz, .., my]T = the
mean vector such that m; is the mean of variable X;,
and T = L, where L is the lower-triangle matrix
obtained from Cholesky decomposition (Melchers,
1999) of the correlation matrix R which is equal to
(Der Kiureghian and Liu, 1985):

R=D'CD™ 9)

where C = [pjjoigj] = the covariance matrix such
that pj is the correlation coefficient of variables X;
and X;. The performance function can be transformed
into the standard space as follows (Der Kiureghian
and Liu, 1985):

As shown in Fig. 1(b), the MPP is the closest point
on the limit state function to the origin in the
standard normal space, and its coordinates are U* =
[Uf,Us, ..., Uy]. The reliability index is the Euclidean
distance from this point to the origin. The MPP in the
original space is X*. Accordingly, the reliability index
can be calculated as follows:

g=|u|=vuu"

(11)

6. The problem of floating-point arithmetic in the
weight index

The calculation of the weight index involves
values of the density function, where in most cases
its value is a small fraction. This is especially the case
when the sample that is generated from the random
variable lies in the vicinity of the tail of the
distribution. As Equation 4 shows, the weight index
for a sample generated from multiple random
variables is the multiplication of these possibly small
fractions. Of course, as the number of random
variables grows, the result of this multiplication gets
smaller and smaller. However, one must be aware of
the computational capabilities and the limits to
which small numbers can be handled by computer
software.

In modern mathematical software, such as
MATLAB  (MathWorks, 2015), floating-point
numbers are typically represented by double
precision format, which requires 64 bits of storage.
Based on this process, there is a smallest and largest
number that can be represented with this format. In
MATLAB, the smallest decimal fraction is about dmin
= 2.22507x10-3098 (MathWorks, 2015). However, and
as will be shown later in this paper, values of the
weight index can be a decimal fraction smaller than
dmin, especially when large numbers of random
variables are handled. Decimal fractions smaller than
dmin are assigned the value of zero in MATLAB
(MathWorks, 2015). Accordingly, this numerical
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issue will prevent the WASM from providing a valid
solution.

In order to overcome this issue and make the
proposed technique capable of determining the
reliability of problems with large numbers of
random variables, it is proposed in this paper that
Equation 4 for calculating the weight index is
modified as follows. In the proposed technique that
will be described in detail in the next section, one is
only interested in calculating the weight index of the
samples and comparing between their values.
Accordingly, it is mathematically permitted to
transform Equation 4 through a strictly increasing
function. The purpose of this transformation, of
course, is to somehow change the scale of the small
weight index values without distorting the weight
index comparison outcomes between the samples.
The natural logarithm function, In(x), has properties
that are perfectly suited for the purposes of the
proposed technique. Fig. 2 shows the values of In(x)
as x changes from 10-3%0 to 103, The In(x) values
that correspond to 10-3%0 and 103% are -690.8 and
690.8, respectively. Furthermore, it is known that
the natural logarithm function has the following
property:

In(xy) = In(x) + In(y) (12)
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Fig. 2: Variation of x with In(x) for very small and very
large positive values

Accordingly, by taking the natural logarithm of
both sides of Equation 4, the following equation can
be obtained:

In (W (i) = In[l_n[ fj(i)j =3 In(1,())
it = (13)

Using Equation 13, the multiplication of small
numbers is avoided and the natural logarithm of the
individual PDFs is summed instead; thus, numbers
smaller than dmin will not be encountered by the
software, except in the unlikely event that the value
of the PDF for a given sample itself is less than dmin.

It should be emphasized that Equation 7 will not
be used to calculate the probability of failure in the
proposed technique. Also, the result obtained by
Equation 13 is not the weight index but rather the
natural logarithm of the weight index. However, if
W(i) > W(j), then by virtue of the strictly increasing

22

property of the natural logarithm function illustrated
in Fig. 2, In(W(i)) > In(W(j)). Accordingly, for the
sake of sorting the samples according to the values of
their weight indices, Equation 13 is appropriate. The
samples are rather sorted according to the values of
their natural logarithm of weight indices. In either
case, the soring outcome is the same, but Equation
13 is numerically superior.

7. The proposed hybrid technique

The basic principle in the proposed hybrid
technique lies in the fact that modified concepts from
WASM are used to find the MPP. Then, the MPP is
transformed to the standard normal space trough
simple mathematical matrix operations as outlined
earlier. Hence, the reliability index is calculated by
Equation 11.
In WASM, the performance function is evaluated
for all generated samples in order to calculate the
probability of failure. As previously explained, the
repetitive evaluation of performance functions that
involves structural analysis of large structures
imposes a significant computational burden over any
simulation-based reliability analysis method. In
order to remedy this problem, the approach for
finding the MPP is modified herein such that the
performance function is evaluated for a minimal
number of samples.
The samples are arranged according to the value
of In(W(i)) in a descending order. Starting from the
sample with highest In(W(i)), and going through the
samples one by one in the order of decreasing
In(W(i)), the index function, I(i), is calculated
according to Equation 5. The process stops once the
sample that provides a value of I(i) = 1.0 is reached.
This sample is the MPP. It is the sample in the failure
region having the highest weight index and thus the
highest likelihood of failure. In this manner, the
performance function is evaluated for only part of
the samples. This surely saves the computational
time that would have been required to evaluate I(i)
for the remaining samples. This iterative process is
illustrated in the flowchart in Fig. 3, which shows the
algorithm of the proposed method. The steps of the
algorithm can be summarized as follows:
1-The random variables and their properties are
identified.

2-Proper intervals for each random variable in the
problem are determined.

3-Samples for all random variables are generated in
a random variable space. The uniform distribution
can be used for generating these random samples.

4-The natural logarithm of the weight index is
determined for each sample.

5-The samples are sorted in a descending order of In
(W(i)). Let q1, 2, --» n be the indexes of the sorted
samples in order.

6-Lett=1.

7-The performance function is evaluated for the
sample having the index q.

8-1f I(q)) = 1.0, the gt sample is the MPP, i.e, X" =
S(qc). Otherwise, t =t + 1 and repeat from Step 7.
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9-Transform X" into the standard normal space to
obtain U".
10-g = 1|

Identify all random varnables, (R.Vs.),
Xl? X: g X’,
and their parameters

y

Determine the intervals for
X’lr X:r ’Y-‘.

!

Generate N samples
S, 8, Sk
where S=(n, », ..., 1)
from the R.Vs. using
the uniform distnbution

y

Calculate the natural loganthm
of the weight index for each sample

In (@)= In(£,)

L
Sort the samples in a descending
order according to In( 11{1)
Let q1. @), ..., gzbe the indexes
of the sorted samples in order

!

Lett=1

v

Check the index function of
the sample having index g,
ie, q)

{g) =1

The sample of index gis the MPP
X*=8gq)

l

Transform X “into the
standard normal space to obtainU”

I}
p=IU’

Fig. 3: Flowchart for the steps of the proposed hybrid
technique

8. Examples
8.1. Parallel bar system

The parallel bar system shown in Fig. 4 is
considered in this example in order to illustrate the
efficiency of using Equation 13 for a problem with
large random variables. In this investigation, the
number of bars, n, is increased from 1 to 100. For
each system created with a given number of bars,
one random sample is generated from each of the
random variables in the system using the uniform
distribution. The random variables considered are
the resistances of the bars. The mean of the bar
resistances are taken as normally distributed
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random variables with means of 2.0x105 and
standard deviations of 2.0x10% For the generated
sample of each system, both the weight index and
the natural logarithm of the weight index are
calculated using Equations 4 and 13, respectively.

Fig. 5(a) shows the variation of the weight index
as the number of bars increases, while Fig. 5(b)
shows the variation of the natural logarithm of the
weight index as the number of bars increases. As
previously explained, the number of random
variables in each created system is equal to the
number of bars, n. It is clear from Fig. 5(a) that the
weight index decreases rapidly as the number of
bars increases. In fact, the weight index is less than
10-300 jn a system containing 60 bars. As shown by
the Figure, larger systems cannot be handled with
the original weight index equation. Of course, the
weight index can be different for different generated
samples of the same system and also for systems
with different properties. However, the conclusion
drawn from this example is that the weight index
equation can fail to provide results in large systems.
The potential of numerical failure in Equation 4
grows in larger structures. This imposes a serious
limitation on the original WASM regarding the size of
the problems that can be handled by the WASM
method.

’,

P
Fig. 4: Parallel bar system with n bars

It is evident in Fig. 5(b) that the logarithm of the
weight index calculated by Equation 13 is a valid
number for the systems with all the number of bars
considered. The equation was capable of handling
the size of the large systems that the original weight
index equation couldn’t.

8.2. Cantilever beam with two random variables

In this example, the proposed hybrid technique is
illustrated on the cantilever beam example shown in
Fig. 6. The details of this problem are adopted from
Li et al. (2013) and Yang and Gu (2004). The
performance function is established such that the tip
displacement must not exceed the maximum allowed
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value, Unax. Therefore, the performance function is
the difference between Un,x and the tip
displacement, and thus the function is given by:

@ 10

16°[

Weight Index, WA)
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Natural Loganthm of the Weight Index, InfW{))

-1200 . . ' : . — : '
0 10 20 30 40 50 60 70 80 90 100
Number of Bars, o
Fig. 5: Variation of (a) the weight index, W(i), and (b)
natural logarithm of the weight index, In(W(i)) with the

number of bars, n

where Umax = 3 inch, E = 30x106 psi is the
modulus of elasticity, L =100 inch is the length of the
beam, and w = 2 inch and t = 4 inch are the width
and height of its cross section, respectively. Py and Py
are external forces treated as normally distributed
random variables with means 500 1b and 1000 Ib,
respectively, and a standard deviation of 100 1b for
both forces.

AN

: ;o

Fig. 6: Cantilever beam and its cross section

The problem is solved using the proposed
technique with 1000 samjples and the results are
compared with those obtained from FORM. The
details of the reliability analysis results for this
cantilever beam example are shown in Table 1.

Fig. 7 shows the sample space for the random
variables, the limit state function g(Px, Py)=0, and the
MPP found using the proposed technique. Clearly,
the proposed technique is capable of obtaining
practically the same result that was obtained by
FORM, in terms of reliability index and MPP.
However, it is evident that FORM was able to find the
solution with less number of performance function
evaluations and less CPU time. It only took FORM 11
times to evaluate the performance function, whereas
the proposed technique evaluated the performance
function 95 times to find the first sorted sample that
fails.

900

800

700
600
500
400
300

2007

® MPP

100
500 600 700 800 900

1000

1100 1200 1300 1400 1500

P,

Fig. 7: lllustration of the MPP on the sample space for the cantilever beam example

If the WASM is used to solve this problem, a
solution is reached only after evaluating the
performance function for all 1000 samples. The

proposed technique is clearly capable of solving this
reliability analysis problem with a much less
computational cost than required by the original
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WASM. However, for problems with a small number
of random variables, such as the present, FORM is
expected to be computationally less time consuming.
It should be noted, though, that Rashki et al. (2012)

Table 1: Details of the reliability analysis results for the cantilever beam example.

have shown that WASM is capable of solving
problems that FORM and SORM couldn’t handle. The
proposed technique carries this same advantage.

Proposed Technique

Reliability Index,

MPP, (Px", Py")

Number of Performance Function

Evaluations

CPU Time (seconds)

1.7448 1.7444
(673.9,1013.6) (673.7,1016.4)
11
1.9 0.2

8.3. An 82-bar truss bridge

The 82-bar truss bridge shown in Fig. 8 is
adopted from Nakib (1997). The cross-sectional
areas assigned to the bridge members are 3.0 in? for
bottom and top chords and 1.5 in? for the vertical
and diagonal elements. The modulus of elasticity of
normally

the truss members are treated as

distributed random variables with coefficient of
variation 0.1 and mean, 29000 Kksi, respectively.
Furthermore, the load P is treated as a normally
distributed random variable with coefficient of
variation 0.1 and mean of 30 kips. Accordingly, 83
random variables are treated in this problem.

'

416 ft

Fig. 8: 82-Bar truss bridge

The mode of failure considered is caused by
excessive displacement of node 26. The performance
functions associated with this mode of failure is
written as follows:

g= Unmax — Uze (15)

where Umax = 0.5 ft is the maximum allowed
displacement, and Uy is the absolute value of the
displacement of node 26.

The problem was solved by the proposed
technique with 1000 samples and the results are
compared with those obtained from FORM. The
forward finite difference is used in FORM for the
gradient computations since Uz is determined by
conducting a structural analysis of the truss bridge.
The reliability index obtained is 4.8192 and 4.8178,
from the proposed technique and FORM,
respectively. Fig. 9 shows the number of structural
analysis operations conducted in each method
considered. As shown by the Figure, FORM required
a significantly larger number of structural analyses
than the proposed technique. This large number of
operations is attributed in part to the numerical
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gradient computations with respect to the large
number of random variables over several iterations
of FORM. Furthermore, the original WASM requires
conducting the structural analysis for all 1000
generated samples. It is clear from these results that
the proposed technique harnessed the power of both
dominant classes of reliability analysis methods and
provided a platform for conducting structural
reliability analysis of large structures in a
significantly reduced computational cost.

9. Conclusions

In this paper, a hybrid technique for computing
the reliability of large structures was presented. In
this technique, modified concepts of the WASM are
used to determine the MPP. The WASM concepts are
modified in order to handle the problem of large
random variables present in large structures and
also in order to find the MPP in a computationally
more efficient manner. The samples generated by
the WASM are arranged according to the natural
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logarithm of the weight index in a descending order.
The natural logarithm function is used to avoid the
encounter of numbers smaller than those that
computer software can handle due to limits in
floating-point representations. Once the MPP is

determined, it is transformed into the standard
normal space. Hence, the reliability index is
calculated in closed-form in the standard normal
space.

WASM

- )

[’}
L3
L

FORM

Proposed Technique ﬁ 16

0 200

400

600 800 1000

Number of Structural Analysis Operations

Fig. 9: Comparison of the number of structural analysis operations for the different methods used to solve the 82-truss bridge
example

The proposed technique was shown to be capable
of solving a reliability analysis problem with a small
number of random variables. However, FORM was
found computationally less time consuming in
solving that example. However, the proposed
technique exhibits the same advantage of WASM in
that it is capable of solving problems that FORM and
SORM can'’t handle. The approach was also tested on
a truss bridge example. It was observed that the
proposed technique required a significantly smaller
number of structural analyses than did FORM. The
computational efficiency of the proposed technique
was evident.
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